MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Redesign and shock analysis of HALIFAX class frigate gas turbine uptake structure

Author(s)
Summers, Simon A. (Simon Andrew)
Thumbnail
DownloadFull printable version (1.533Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Tomasz Wierzbicki.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The gas turbine exhaust uptakes in the HALIFAX class frigates of the Canadian Navy have experienced thermally-induced fatigue cracking since soon after the commissioning of these ships. The uptake structure is heavily stiffened in order to meet shock resistance requirements. Unfortunately, the result has been that thermal expansion of the uptake shell is constrained, thus every flash-up and shut-down of a gas turbine results in a fatigue cycle of its uptake with extremely high stresses. Among the methods proposed to address the problem is the structural redesign of the uptakes within the constraints of the original mounting arrangements. Any such redesign would be required to reduce thermal stresses while still meeting the shock resistance requirements. This work presents the redesign of the uptakes such that they continue to meet shock requirements while incorporating design aspects, developed in the literature, which are anticipated to reduce thermal stresses. The original intention was to use the modal-based design response spectrum method to assess shock resistance. However, due to excessive stresses in the original model and in all subsequent modifications using this method, the less-rigorous base acceleration method was primarily used.
Description
Thesis (S.M. in Mechanical Engineering and Naval Architecture and Marine Engineering)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (p. 62-63).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/44923
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.