MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real-time maneuvering decisions for autonomous air combat

Author(s)
McGrew, James S
Thumbnail
DownloadFull printable version (19.16Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Jonathan How.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Unmanned Aircraft Systems (UAS) have the potential to perform many of the complex and possibly dangerous missions currently flown by manned aircraft. Within visual range air combat is an extremely difficult and dynamic aerial task which presents many challenges for an autonomous UAS. An agile, unpredictable, and possibly human-piloted adversary, coupled with a complex and rapidly changing environment, creates a problem that is difficult to model and solve. This thesis presents a method for formulating and solving a function approximation dynamic program to provide maneuvering decisions for autonomous one-on-one air combat. Value iteration techniques are used to compute a function approximation representing the solution to the dynamic program. The function approximation is then used as a maneuvering policy for UAS autonomous air combat. The result is an algorithm capable of learning a maneuvering policy and utilizing this policy to make air combat decisions in real-time. Simulation results are presented which demonstrate the robustness of the method against an opponent beginning from both offensive and defensive situations. The results also demonstrate the ability of the algorithm to learn to exploit an opponent's maneuvering strategy. Flight results are presented from implementation on micro-UAS flown at MIT's Real-time indoor Autonomous Vehicle test ENvironment (RAVEN) demonstrating the practical application of the proposed solution in real-time flight with actual aircraft.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2008.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (p. 127-129).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/44927
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.