MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Two classes of unconventional photonic crystals

Author(s)
Chong, Y. D. (Yi Dong)
Thumbnail
DownloadFull printable version (2.557Mb)
Alternative title
2 classes of unconventional photonic crystals
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
Marin Soljačić.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis concerns two classes of photonic crystal that differ from the usual solid-state dielectric photonic crystals studied in optical physics. The first class of unconventional photonic crystal consists of atoms bound in an optical lattice. This is a "resonant photonic crystal", in which an underlying optical resonance modifies the usual band physics. I present a three-dimensional quantum mechanical model of exciton polaritons which describes this system. Amongst other things, the model explains the reason for the resonant enhancement of the photonic bandgap, which turns out to be related to the Purcell effect. An extension of this band theoretical approach is then used to study dark-state polaritons in -type atomic media. The second class of unconventional photonic crystal consists of two dimensional photonic crystals that break time-reversal symmetry due to a magneto-optic effect. The band theory for such systems involves topological quantities known as "Chern numbers", which give rise to the phenomenon of disorder-immune one-way edge modes. I describe a system in which time reversal symmetry is broken strongly enough for experimental observation of the one-way edge modes. In addition to numerical studies of this photonic crystal, I develop an analytical effective theory, based on the symmetry of the lattice, that accurately describes its bandstructure.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2008.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (p. 122-126).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45169
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.