Show simple item record

dc.contributor.advisorErotokritos Katsavounidis and Paulo Lorano.en_US
dc.contributor.authorBrunet, Gautier (Gautier Herenui)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.en_US
dc.date.accessioned2009-04-29T17:12:44Z
dc.date.available2009-04-29T17:12:44Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/45235
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2008.en_US
dc.descriptionIncludes bibliographical references (leaves 69-71).en_US
dc.description.abstractThe LIGO (Laser Interferometer Gravitational Wave Observatory) detectors have now completed their fifth science run and have reached design sensitivity. Gravitational wavebursts only last for a few cycles within the characteristic frequency band of LIGO. This work focuses on the study of burst-like hardware injections during the fifth science run. Injected signals serve multiple purposes. Their primary goal is to study the cross-couplings between the gravitational wave channel and the auxilary channels. They also allow us to benchmark the ability of our search method to extract the signal parameters, thereby validating a whole portion of the analysis pipeline. Finally, they enable us to quantify the efficiency of our detectors depending on the strength and morphology of the signal. The stationarity of this parameter is also studied to ensure the variation of the sensibility is limited. Using theoretical estimations of the amplitude of the gravitational waves emitted by different sources, these efficiencies in turn allows us to have an estimate of the rate at which detection can be expected for each type of astrophysical object. This work does not reflect the scientific opinion of the LIGO Scientific Collaboration and it was not reviewed by the collaboration.en_US
dc.description.statementofresponsibilityby Gautier Brunet.en_US
dc.format.extent71 leavesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleA study of the detection efficiency of the LIGO interferometers to transient sourcesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc309295805en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record