Show simple item record

dc.contributor.advisorAlan Epstein.en_US
dc.contributor.authorChan, Nicholas Y. Sen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.en_US
dc.date.accessioned2009-04-29T17:12:53Z
dc.date.available2009-04-29T17:12:53Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/45236
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2008.en_US
dc.descriptionIncludes bibliographical references (p. 81-84).en_US
dc.description.abstractSmall aircraft engines traditionally have poorer performance compared to larger engines, which until recently, has been a factor that outweighed the aerodynamic benefits of commoditized and distributed propulsion. Improvements in the performance of small engines have, however, prompted another look at this old concept. This thesis examines aspects of aircraft engines that may have application to commodity thrust or distributed propulsion applications. Trends of engine performance with size and time are investigated. These trends are further extended to justify parameter choices for conceptual engines of the current, mid-term (10 years) and far-term (20 years). Uninstalled and installed performances are evaluated for these engines, and parametric studies are performed to determine the most influential and limiting factors. It is found that scaling down of engines is detrimental to SFC and fuel burn, mainly due to the Reynolds number effect. The more scaling done, the more prominent the effect. It is determined that new technology such as higher TIT, OPR and turbomachinery [eta]poly's for small aircraft engines enable the operation of larger bypass ratios, which is the most influential parameter to SFC and fuel bum. The increase of bypass ratio up to a value of 8 is found to be effective for such improvement. SFC decrease from the current to mid-term model is found to be ~20% and ~9% from mid-term to far-term. Range and endurance improvements are found to be ~30% and ~10% respectively for the mission examined. Finally, the mid-term engine model has performance comparable to that of a current, larger state-of-the-art engine, thus suggesting that improvement in small gas turbine technology in the next 10 years will make the application of commodity thrust or distributed propulsion an attractive option for future aircraft.en_US
dc.description.statementofresponsibilityby Nicholas Y.S. Chan.en_US
dc.format.extent84 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleScaling considerations for small aircraft enginesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc309295843en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record