MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Planning in information space for a quadrotor helicopter in a GPS-denied environment

Author(s)
He, Ruijie
Thumbnail
DownloadFull printable version (19.81Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Nicholas Roy.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Unmanned Air Vehicles (UAVs) have thus far had limited success in flying autonomously indoors, with the exception of specially instrumented locations. In indoor environments, accurate global positioning information is unavailable, and the vehicle has to rely on onboard sensors to detect environmental features and infer its position. Given that a vehicle small enough to fly indoors can only carry a limited sensor payload, the vehicle's ability to localize itself varies across different environments, since different surroundings provide varying degrees of sensor information. Therefore, a vehicle that plans a path without regard to how well it can localize itself along that path runs the risk of becoming lost. My research focuses on how path-planning can be performed to minimize localization uncertainty, and works towards developing a motion-planning algorithm for a quadrotor helicopter. As a starting point, I apply the Belief Roadmap (BRM) algorithm, an information-theoretic extension of the Probabilistic Roadmap algorithm, incorporating sensing during the path-planning process. I make two theoretical contributions in this research. First, I extend the original BRM to use non-linear state inference via the Unscented Kalman Filter, providing better approximation of the non-linearities of laser sensing onboard the UAV. Second, I develop a sampling strategy for the BRM, minimizing the number of samples required to find a good path. Finally, I demonstrate the BRM path-planning algorithm on a quadrotor helicopter, navigating the vehicle autonomously in an indoor environment.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2008.
 
Includes bibliographical references (leaves 85-87).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45241
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.