MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiscale Dynamic Time and Space Warping

Author(s)
Fitriani
Thumbnail
DownloadFull printable version (20.47Mb)
Alternative title
Multiscale DTSW
Other Contributors
Massachusetts Institute of Technology. Computation for Design and Optimization Program.
Advisor
Brian W. Anthony.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Dynamic Time and Space Warping (DTSW) is a technique used in video matching applications to find the optimal alignment between two videos. Because DTSW requires O(N4) time and space complexity, it is only suitable for short and coarse resolution videos. In this thesis, we introduce Multiscale DTSW: a modification of DTSW that has linear time and space complexity (O(N)) with good accuracy. The first step in Multiscale DTSW is to apply the DTSW algorithm to coarse resolution input videos. In the next step, Multiscale DTSW projects the solution from coarse resolution to finer resolution. A solution for finer resolution can be found effectively by refining the projected solution. Multiscale DTSW then repeatedly projects a solution from the current resolution to finer resolution and refines it until the desired resolution is reached. I have explored the linear time and space complexity (O(N)) of Multiscale DTSW both theoretically and empirically. I also have shown that Multiscale DTSW achieves almost the same accuracy as DTSW. Because of its efficiency in computational cost, Multiscale DTSW is suitable for video detection and video classification applications. We have developed a Multiscale-DTSW-based video classification framework that achieves the same accuracy as a DTSW-based video classification framework with greater than 50 percent reduction in the execution time. We have also developed a video detection application that is based on Dynamic Space Warping (DSW) and Multiscale DTSW methods and is able to detect a query video inside a target video in a short time.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2008.
 
Includes bibliographical references (p. 149-151).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45279
Department
Massachusetts Institute of Technology. Computation for Design and Optimization Program
Publisher
Massachusetts Institute of Technology
Keywords
Computation for Design and Optimization Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.