MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Proximity operations of a miniature inspector satellite using emulated computer vision

Author(s)
Edwards, Christine Marie
Thumbnail
DownloadFull printable version (39.49Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
David W. Miller.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
If a micrometeoroid, a piece of space junk, launch debris, or a major system failure impacts the Crew Exploration Vehicle (CEV), it can cause life-threatening damage. Past International Space Station (ISS) and Space Shuttle repair missions have shown that inspection of a damaged system is crucial for planning the EVA to repair it. To assist the CEV team with inspection and contingency planning, an inspector satellite can be an essential tool. This thesis presents the idea of using a miniature satellite to inspect the CEV for damage while flying in formation. In this research, the satellite test bed SPHERES has been used to develop, demonstrate, and flight-test an inspector-satellite operations design and controller. The design utilizes an autonomous control algorithm that combines Linear Quadratic Regulator (LQR) and Artificial Potential Field (APF) control. This controller is designed to navigate through waypoints, follow the contours of an inspected spacecraft's surface, avoid obstacles, operate in real-time onboard the inspector satellite, work with or without a-priori knowledge of the inspected spacecraft's geometry, interface with a computer-vision system, and handle the loss of computer-vision information. Since the SPHERES camera system is currently under development, computer vision data was emulated using the current SPHERES global metrology. Results from simulations and successful flight tests aboard the ISS are discussed.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2008.
 
Includes bibliographical references (p. 115-117).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45288
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.