MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Aeronautics and Astronautics
  • Aeronautics and Astronautics - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Aeronautics and Astronautics
  • Aeronautics and Astronautics - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A robust motion planning approach for autonomous driving in urban areas

Author(s)
Fiore, Gaston A
Thumbnail
DownloadFull printable version (64.02Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Jonathan P. How and Emilio Frazzoli.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis presents an improved sampling-based motion planning algorithm, Robust RRT, that is designed specifically for large robotic vehicles and uncertain, dynamic environments. Five main extensions have been made to the original RRT algorithm to improve performance in this type of applications. The closed-loop system is used for state propagation, enabling easy handling of complex, nonlinear, and unstable dynamics. The environment structure is exploited during the sampling process, increasing the probability that a given sample will be reachable. Efficient heuristics are employed in the expansion of the tree and a risk penalty is incorporated to capture uncertainty in the environment and keep the vehicle a safe distance away from hazards. The safety of the vehicle is guaranteed with the assumption of no unexpected changes in the environment, which is achieved by requiring that every trajectory sent for execution ends in a state with the vehicle stopped. Finally, risk evaluation follows a lazy evaluation strategy, allowing the algorithm to spend most of the computation time in the expansion step. The effectiveness of the Robust RRT algorithm for planning in an urban environment is demonstrated through numerous simulated scenarios and real data corresponding to its implementation in MIT's robotic vehicle that competed in the DARPA Urban Challenge.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2008.
 
Includes bibliographical references (p. 161-167).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45291
Department
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Aeronautics and Astronautics - Master's degree
  • Aeronautics and Astronautics - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.