MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantifying uncertainty in computational neuroscience with Bayesian statistical inference

Author(s)
Cronin, Beau D
Thumbnail
DownloadFull printable version (25.69Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Brain and Cognitive Sciences.
Advisor
Mriganka Sur.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Two key fields of computational neuroscience involve, respectively, the analysis of experimental recordings to understand the functional properties of neurons, and modeling how neurons and networks process sensory information in order to represent the environment. In both of these endeavors, it is crucial to understand and quantify uncertainty - when describing how the brain itself draws conclusions about the physical world, and when the experimenter interprets neuronal data. Bayesian modeling and inference methods provide many advantages for doing so. Three projects are presented that illustrate the advantages of the Bayesian approach. In the first, Markov chain Monte Carlo (MCMC) sampling methods were used to answer a range of scientific questions that arise in the analysis of physiological data from tuning curve experiments; in addition, a software toolbox is described that makes these methods widely accessible. In the second project, the model developed in the first project was extended to describe the detailed dynamics of orientation tuning in neurons in cat primary visual cortex. Using more sophisticated sampling-based inference methods, this model was applied to answer specific scientific questions about the tuning properties of a recorded population. The final project uses a Bayesian model to provide a normative explanation of sensory adaptation phenomena. The model was able to explain a range of detailed physiological adaptation phenomena.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2008.
 
Includes bibliographical references (p. 101-106).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45336
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Brain and Cognitive Sciences.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.