MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of techniques for quantum-enhanced laser-interferometric gravitational-wave detectors

Author(s)
Goda, Keisuke
Thumbnail
DownloadFull printable version (69.98Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
Nergis Mavalvala.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A detailed theoretical and experimental study of techniques necessary for quantum-enhanced laser- interferometric gravitational wave (GW) detectors was carried out. The basic theory of GWs and laser-interferometric GW detectors, quantum noise in GW detectors, the theory of squeezed states including generation, degradation, detection, and control of squeezed states using sub-threshold optical parametric oscillators (OPOs) and homodyne detectors, experimental characterization of these techniques (using periodically poled KTiOPO4 in an OPO at 1064 nm for the first time), key requirements for quantum-enhanced GW detectors, and the propagation of a squeezed state in a complex interferometer and its interaction with the interferometer field were studied. Finally, the experimental demonstration of quantum-enhancement in a prototype GW detector was performed. By injecting a squeezed vacuum field of 9.3 dB (inferred) or 7.4 ± 0.1 dB (measured) at frequencies above 3 kHz and a cutoff frequency for squeezing at 700 Hz into the antisymmetric port of the prototype GW detector in a signal-recycled Michelson interferometer configuration, the shot noise floor of the detector was reduced broadband from 7.0 x 10-7 m/viH- to 5.0 x 10-17 m/V/H while the strength of a simulated GW signal was retained, resulting in a 40% increase in signal-to-noise ratio or detector sensitivity, which is equivalent to a factor of 1.43 = 2.7 increase in GW detection rate for isotropically distributed GW sources that are confined to the frequency band in which squeezing was effective. This is the first implementation of quantum-enhancement in a prototype GW detector with suspended optics and readout and control schemes similar to those used in LIGO and Advanced LIGO. It is, therefore, a critical step toward implementation of quantum-enhancement in long baseline GW detectors.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2007.
 
Includes bibliographical references (p. 213-225).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/45405
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.