Show simple item record

dc.contributor.advisorDeepto Chakrabarty.en_US
dc.contributor.authorKrauss, Miriam Ilanaen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Physics.en_US
dc.date.accessioned2009-04-29T17:37:31Z
dc.date.available2009-04-29T17:37:31Z
dc.date.copyright2007en_US
dc.date.issued2007en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/45408
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2007.en_US
dc.descriptionIncludes bibliographical references (p. 133-150).en_US
dc.description.abstractIn this thesis, I present work spanning a variety of topics relating to neutron star lowmass X-ray binaries (LMXBs) and utilize spectral information from X-ray observations to further our understanding of these sources. First, I give an overview of important X- ray astrophysics relevant to the work I present in subsequent chapters, as well as information about the X-ray observatories from which I obtained my data. In the next three chapters, I consider spectra-both high- and low-resolution--of accretion-powered millisecond X-ray pulsars, a unique and relatively new class of objects. In addition to analysis of the pulsar XTE J1814-338, I compare a broader sample of pulsars with a sample of atoll sources in order to better understand why the latter class do not contain persistently pulsating neutron stars. In particular, I test the hypothesis that pulsations in the atoll sources are suppressed by a high-optical- depth scattering region. Using X-ray color-color diagrams to define a selection criterion based on spectral state, I analyze Rossi X-ray Timing Explorer (RXTE) spectra from all the sources, and use a Comptonization model to obtain measurements of their optical depths. I then discuss efforts to spatially resolve X-ray jets from the accretion-powered millisecond pulsar SAX J1808.4-3658 and the Z source XTE J1701-462. Each was observed by the Chandra X-ray Observatory to produce a high-spatial-resolution image. This work was motivated in part by my analysis of XTE J1814-338, which found an apparent excess of infrared flux which could be attributed to jet emission. Next, I discuss the measured temperatures of thermonuclear X-ray bursts. The detection of line features in these bursts, and hence from the surfaces of neutron stars, has been an important goal for high-resolution X-ray spectroscopy. A measurement of the wavelengths of identified line features would yield a measurement of the neutron star's gravitational redshift, which would help constrain current models for the neutron star equation of state.en_US
dc.description.abstract(cont.) Although such a measurement has been made for one source, other searches have not been able to repeat this measurement. I consider the effects of burst temperature on the formation of discrete spectral features, using a large sample of bursts observed by the RXTE PCA. Finally, I present analysis of high-resolution Chandra HETG spectra of a sample of Galactic LMXBs. High-resolution spectra are able to resolve line features, such as the prominent Ne and O emission lines in the ultracompact X-ray binary 4U 1626-67. They also allow for more precise measurements of photoelectric absorption edges, which can otherwise hinder the determination of continuum spectral components, particularly in the lower-energy spectral regions.en_US
dc.description.statementofresponsibilityby Miriam Ilana Krauss.en_US
dc.format.extent150 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectPhysics.en_US
dc.titleX-ray spectroscopy of neutron star low-mass X-ray binariesen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.oclc317482148en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record