MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamic viscoelasticity of actin networks cross-linked with wild-type and mutant [alpha]-actinin-4

Author(s)
Volkmer Ward, Sabine M
Thumbnail
DownloadFull printable version (8.489Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
David A. Weitz.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The actin cross-linker [alpha]-actinin-4 has been found indispensable for the structural and functional integrity of podocytes; deficiency or alteration of this protein due to mutations disturbs the cytoskeleton and results in kidney disease. This thesis presents rheological studies of in vitro actin networks cross-linked with wild-type and mutant a-actinin-4, which provide insight into the effect of the cross-linker on the mechanical properties of the networks. The frequency dependent viscoelasticity of the actin/[alpha]-actinin-4 networks is characterized by an elastic plateau at intermediate frequencies, and relaxation towards fluid properties at low frequencies. Since the elastic plateau is a consequence of cross-linking, its modulus increases with the [alpha]-actinin-4 concentration. Networks with wild-type and mutant a-actinin-4 differ significantly in their time scales: The relaxation frequencies of networks with the mutant cross-linker are an order of magnitude lower than that with the wild-type, suggesting a slower dissociation rate of mutant [alpha]-actinin-4 from actin, consistent with a smaller observed equilibrium dissociation constant. This difference can be attributed to an additional binding site, which is exposed as a result of the mutation. An increase in the temperature of networks with mutant [alpha]-actinin-4 appears to return the viscoelasticity to that of networks cross-linked by the wild-type. Moreover, the temperature dependence of the relaxation frequencies follows the Arrhenius equation for both cross-linkers. These results strongly support the proposition that the macroscopic relaxation of the networks directly reflects the microscopic dissociation rates of their constituents.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Physics, 2008.
 
In title on title page, "[alpha]" appears as lower case Greek letter.
 
Includes bibliographical references (p. 49-52).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45430
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.