MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optical modeling of organic electronic devices

Author(s)
Celebi, Kemal
Thumbnail
DownloadFull printable version (15.97Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
Marc A. Baldo.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Organic materials, with their superior photoluminescence and absorbance properties have revolutionized the technologies for displays and solar energy conversion. Due to the large transition dipoles, the localization of excited states or excitons in organic materials necessitates optical models that extend beyond classical far field methods. In this thesis we propose an extended near field calculation method using dyadic Green's functions and demonstrate the applications of both our extended model and traditional far field models for different types of devices such as surface plasmon detectors, cavity organic light emitting devices and organic photovoltaics with external antennas.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Physics, 2008.
 
Includes bibliographical references (p. 51-53).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45431
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.