Algorithmic and game-theoretic perspectives on scheduling
Author(s)
Uhan, Nelson A. (Nelson Alexander)
DownloadFull printable version (732.4Kb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Andreas S. Schulz.
Terms of use
Metadata
Show full item recordAbstract
(cont.) Second, for almost all 0-1 bipartite instances, we give a lower bound on the integrality gap of various linear programming relaxations of this problem. Finally, we show that for almost all 0-1 bipartite instances, all feasible schedules are arbitrarily close to optimal. Finally, we consider the problem of minimizing the sum of weighted completion times in a concurrent open shop environment. We present some interesting properties of various linear programming relaxations for this problem, and give a combinatorial primal-dual 2-approximation algorithm. In this thesis, we study three problems related to various algorithmic and game-theoretic aspects of scheduling. First, we apply ideas from cooperative game theory to study situations in which a set of agents faces super modular costs. These situations appear in a variety of scheduling contexts, as well as in some settings related to facility location and network design. Although cooperation is unlikely when costs are super modular, in some situations, the failure to cooperate may give rise to negative externalities. We study the least core value of a cooperative game -- the minimum penalty we need to charge a coalition for acting independently that ensures the existence of an efficient and stable cost allocation -- as a means of encouraging cooperation. We show that computing the least core value of supermodular cost cooperative games is strongly NP-hard, and design an approximation framework for this problem that in the end, yields a (3 + [epsilon])-approximation algorithm. We also apply our approximation framework to obtain better results for two special cases of supermodular cost cooperative games that arise from scheduling and matroid optimization. Second, we focus on the classic precedence- constrained single-machine scheduling problem with the weighted sum of completion times objective. We focus on so-called 0-1 bipartite instances of this problem, a deceptively simple class of instances that has virtually the same approximability behavior as arbitrary instances. In the hope of improving our understanding of these instances, we use models from random graph theory to look at these instances with a probabilistic lens. First, we show that for almost all 0-1 bipartite instances, the decomposition technique of Sidney (1975) does not yield a non-trivial decomposition.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2008. Includes bibliographical references (p. 103-110).
Date issued
2008Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of ManagementPublisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.