MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Algorithmic and game-theoretic perspectives on scheduling

Author(s)
Uhan, Nelson A. (Nelson Alexander)
Thumbnail
DownloadFull printable version (732.4Kb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Andreas S. Schulz.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
(cont.) Second, for almost all 0-1 bipartite instances, we give a lower bound on the integrality gap of various linear programming relaxations of this problem. Finally, we show that for almost all 0-1 bipartite instances, all feasible schedules are arbitrarily close to optimal. Finally, we consider the problem of minimizing the sum of weighted completion times in a concurrent open shop environment. We present some interesting properties of various linear programming relaxations for this problem, and give a combinatorial primal-dual 2-approximation algorithm.
 
In this thesis, we study three problems related to various algorithmic and game-theoretic aspects of scheduling. First, we apply ideas from cooperative game theory to study situations in which a set of agents faces super modular costs. These situations appear in a variety of scheduling contexts, as well as in some settings related to facility location and network design. Although cooperation is unlikely when costs are super modular, in some situations, the failure to cooperate may give rise to negative externalities. We study the least core value of a cooperative game -- the minimum penalty we need to charge a coalition for acting independently that ensures the existence of an efficient and stable cost allocation -- as a means of encouraging cooperation. We show that computing the least core value of supermodular cost cooperative games is strongly NP-hard, and design an approximation framework for this problem that in the end, yields a (3 + [epsilon])-approximation algorithm. We also apply our approximation framework to obtain better results for two special cases of supermodular cost cooperative games that arise from scheduling and matroid optimization. Second, we focus on the classic precedence- constrained single-machine scheduling problem with the weighted sum of completion times objective. We focus on so-called 0-1 bipartite instances of this problem, a deceptively simple class of instances that has virtually the same approximability behavior as arbitrary instances. In the hope of improving our understanding of these instances, we use models from random graph theory to look at these instances with a probabilistic lens. First, we show that for almost all 0-1 bipartite instances, the decomposition technique of Sidney (1975) does not yield a non-trivial decomposition.
 
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2008.
 
Includes bibliographical references (p. 103-110).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45607
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.