MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantitative analysis of cerebral white matter anatomy from diffusion MRI

Author(s)
Maddah, Mahnaz
Thumbnail
DownloadFull printable version (4.925Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
W. Eric L. Grimson, William M. Wells and Carl-Fredrik Westin.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis we develop algorithms for quantitative analysis of white matter fiber tracts from diffusion MRI. The presented methods enable us to look at the variation of a diffusion measure along a fiber tract in a single subject or a population, which allows important clinical studies toward understanding the relation between the changes in the diffusion measures and brain diseases, development, and aging. The proposed quantitative analysis is performed on a group of fiber trajectories extracted from diffusion MRI by a process called tractography. To enable the quantitative analysis we first need to cluster similar trajectories into groups that correspond to anatomical bundles and to establish the point correspondence between these variable-length trajectories. We propose a computationally-efficient approach to find the point correspondence and the distance between each trajectory to the prototype center of each bundle. Based on the computed distances we also develop a novel model-based clustering of trajectories into anatomically-known fiber bundles. In order to cluster the trajectories, we formulate an expectation maximization algorithm to infer the parameters of the gamma-mixture model that we built on the distances between trajectories and cluster centers. We also extend the proposed clustering algorithm to incorporate spatial anatomical information at different levels through hierarchical Bayesian modeling. We demonstrate the effectiveness of the proposed methods in several clinical applications. In particular, we present our findings in identifying localized group differences in fiber tracts between normal and schizophrenic populations.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (p. 165-177).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45614
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.