MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Infection processes on networks with structural uncertainty

Author(s)
Zager, Laura (Laura A.)
Thumbnail
DownloadFull printable version (2.274Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
George Verghese.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Over the last ten years, the interest in network phenomena and the potential for a global pandemic have produced a tremendous volume of research exploring the consequences of human interaction patterns for disease propagation. The research often focuses on a single question: will an emerging infection become an epidemic? This thesis clarifies the relationships among different epidemic threshold criteria in deterministic disease models, and discusses the role and meaning of the basic reproductive ratio, R0. We quantify the incorporation of population structure into this general framework, and identify conditions under which interaction topology and infection characteristics can be decoupled in the computation of threshold functions, which generalizes many existing results in the literature. This decoupling allows us to focus on the impact of network topology via the spectral radius of the adjacency matrix of the network. It is rare, however, that one has complete information about every potential disease-transmitting interaction; this uncertainty in the network structure is often ignored in deterministic models. Neglecting this uncertainty can lead to an underestimate of R0, an unacceptable outcome for public health planning. Is it possible to make guarantees and approximations regarding disease spread when only partial information about the routes of transmission is known? We present methods for making predictions about disease spread over uncertain networks, including approximation techniques and bounding results obtained via spectral graph theory, and illustrate these results on several data sets. We also approach this problem by using simulation and analytical work to characterize the spectral radii that arise from members of the exponential random graph family, commonly used to model empirical networks in quantitative sociology. Finally, we explore several issues in the spatiotemporal patterns of epidemic propagation through a network, focusing on the behavior of the contact process and the influence model.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (p. 167-175).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45616
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.