dc.contributor.advisor | Michael D. Ernst. | en_US |
dc.contributor.author | Papi, Matthew M | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2009-06-25T20:36:32Z | |
dc.date.available | 2009-06-25T20:36:32Z | |
dc.date.copyright | 2008 | en_US |
dc.date.issued | 2008 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/45631 | |
dc.description | Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008. | en_US |
dc.description | This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. | en_US |
dc.description | Includes bibliographical references (p. 109-115). | en_US |
dc.description.abstract | This paper introduces the Checker Framework, which supports adding pluggable type systems to the Java language in a backward-compatible way. A type system designer defines type qualifiers and their semantics, and a compiler plug-in enforces the semantics. Programmers can write the type qualifiers in their programs and use the plug-in to detect or prevent errors. The Checker Framework is useful both to programmers who wish to write error-free code, and to type system designers who wish to evaluate and deploy their type systems. The Checker Framework includes new Java syntax for expressing type qualifiers; declarative and procedural mechanisms for writing type-checking rules; and support for flow-sensitive local type qualifier inference and for polymorphism over types and qualifiers. The Checker Framework is well-integrated with the Java language and toolset. We have evaluated the Checker Framework by writing five checkers and running them on over 600K lines of existing code. The checkers found real errors, then confirmed the absence of further errors in the fixed code. The case studies also shed light on the type systems themselves. | en_US |
dc.description.statementofresponsibility | by Matthew M. Papi. | en_US |
dc.format.extent | 115 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Practical pluggable types for Java | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M.Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 355433044 | en_US |