Complexity of union-split-find problems
Author(s)
Lai, Katherine Jane
DownloadFull printable version (248.9Kb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Erik D. Demaine.
Terms of use
Metadata
Show full item recordAbstract
In this thesis, we investigate various interpretations of the Union-Split-Find problem, an extension of the classic Union-Find problem. In the Union-Split Find problem, we maintain disjoint sets of ordered elements subject to the operations of constructing singleton sets, merging two sets together, splitting a set by partitioning it around a specified value, and finding the set that contains a given element. The different interpretations of this problem arise from the different assumptions made regarding when sets can be merged and any special properties the sets may have. We define and analyze the Interval, Cyclic, Ordered, and General Union-Split-Find problems. Previous work implies optimal solutions to the Interval and Ordered Union-Split-Find problems and an (log n/ log log n) lower bound for the Cyclic Union-Split-Find problem in the cell-probe model. We present a new data structure that achieves a matching upper bound of (log n/ log log n) for Cyclic Union-Split Find in the word RAM model. For General Union-Split-Find, no o(n) bound is known. We present a data structure which has an [Omega](log2 n) amortized lower bound in the worst case that we conjecture has polylogarithmic amortized performance. This thesis is the product of joint work with Erik Demaine.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Includes bibliographical references (p. 45-46).
Date issued
2008Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.