Show simple item record

dc.contributor.advisorDavid R. Karger.en_US
dc.contributor.authorScott, Jacob (Jacob Healy)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2009-06-30T16:11:21Z
dc.date.available2009-06-30T16:11:21Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/45750
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.en_US
dc.descriptionIncludes bibliographical references (p. 59-60).en_US
dc.description.abstractMotivated by problems in distributed computing, this thesis presents the first nontrivial polynomial time approximation algorithms for an important class of machine scheduling problems. We study the family of preemptive minimum makespan scheduling problems where jobs have stochastic processing requirements and provide the first approximation algorithms for these problems when machines have unrelated speeds. We show a series of algorithms that apply given increasingly general classes of precedence constraints on jobs. Letting n and m be, respectively, the number of jobs and machines in an instance, when jobs need an exponentially distributed amount of processing, we give: -- An O(log log min {m, n} )-approximation algorithm when jobs are independent; -- An 0 (log(n + m) log log min {m, n})-approximation algorithm when precedence constraints form disjoint chains; and, -- An O(log n log(n + m) log log min {m, n} )-approximation algorithm when precedence constraints form a directed forest. Very simple modifications allow our algorithms to apply to more general distributions, at the cost of slightly worse approximation ratios. Our O(log log n)-approximation algorithm for independent jobs holds when we allow restarting instead of preemption. Here jobs may switch machines, but lose all previous processing if they do so. We also consider problems in the framework of scheduling under uncertainty. This model considers jobs that require unit processing on machines with identical speeds. However, after processing a job to completion, a machine has an (unrelated) probability of failing and leaving the job uncompleted. This difficulty is offset by allowing multiple machines to process a job simultaneously. We prove that this model is equivalent to a slightly modified version of the family of problems described above and provide approximation algorithms for analogous problems with identical ratios.en_US
dc.description.statementofresponsibilityby Jacob Scott.en_US
dc.format.extent67 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleApproximation algorithms for stochastic scheduling on unrelated machinesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc298133724en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record