MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Bachelor's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Bachelor's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computational fluid dynamic (CFD) optimization of microfluidic mixing in a MEMS steam generator

Author(s)
Collins, Kimberlee C. (Kimberlee Chiyoko)
Thumbnail
DownloadFull printable version (6.401Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Carol Livermore.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The challenge of achieving rapid mixing in microchannels is addressed through a computational fluid dynamics (CFD) study using the ADINA-F finite element program. The study is motivated by the need to design an adequate mixing chamber for aqueous chemical reactants in a micro steam generator. The study focuses on the geometric optimization of a static micromixer channel by considering the trade-off between mixing quality and pressure drop. Both zigzag and straight channels are evaluated, in addition to channels with differing amounts of added obstruction features. Due to computational limits, the numerical analysis is conducted in two dimensions. The results indicate that hydrodynamic focusing of the reactant at the inlet, in addition to the amount and density of added obstruction features, has the most significant impact on mixing efficiency and increased pressure drop. The study presents mixing quality and pressure drop trends that provide useful information for the micro steam generator mixing chamber design.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.
 
Includes bibliographical references (p. 23-24).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45770
Department
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Mechanical Engineering - Bachelor's degree
  • Mechanical Engineering - Bachelor's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.