MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling temperature distribution in cylindrical lithium ion batteries for use in electric vehicle cooling system design

Author(s)
Jasinski, Samuel Anthony
Thumbnail
DownloadFull printable version (11.17Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Yet-Ming Chiang.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Recent advancements in lithium ion battery technology have made BEV's a more feasible alternative. However, some safety concerns still exist. While the energy density of lithium ion batteries has all but made them the premier electric vehicle (EV) battery choice, their potential to overheat and explode is a limiting factor. Beyond certain temperature thresholds, lithium ion batteries will experience what is known as thermal runaway. During thermal runaway, the temperature of the battery increases uncontrollably and fires and explosions can occur. For this reason, adequate thermal management is a necessity in bringing lithium ion battery powered vehicles to market. The purpose of this work is to 1) develop mathematical models for temperature distribution and heat transfer in cylindrical lithium-ion cells and battery packs, 2) derive the target heat transfer coefficient for an EV cooling system 3) analyze the key design parameters of EV thermal management systems, and, ultimately, 4) determine the method of cooling necessary to prevent thermal runaway. The models are based on the fundamentals of heat transfer and are integrated into computer simulations for testing. Based on the models developed in this analysis, forced convection at the surface of the battery pack is not sufficient for preventing thermal runaway outside of minimum operational requirements (low ambient temperatures and discharge rates). For typical vehicle usage, a system in which the working fluid penetrates the pack is needed. There may be potential for a hybrid cooling system: one that relies on surface convection for less strenuous operation and strategically placed cooling channels for typical and extraneous operation.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.
 
Includes bibliographical references (leaf 31).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45824
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.