Show simple item record

dc.contributor.advisorJacob White.en_US
dc.contributor.authorLee, Jung Hoon, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2009-06-30T16:27:56Z
dc.date.available2009-06-30T16:27:56Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/45861
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.en_US
dc.descriptionIncludes bibliographical references (p. 125-137).en_US
dc.description.abstractInverse wave scattering problems arise in many applications including computerized/diffraction tomography, seismology, diffraction/holographic grating design, object identification from radar singals, and semiconductor quality control. Efficient algorithms exist for some inverse wave scattering problems in the low- and high-frequency regime or with weak scatterers. However, inverse wave scattering problems in the resonance regime with strong scatterers still pose many challenges. This thesis proposes algorithms for inverse wave scattering problems in the resonance regime with strong scatterers. These problems are part of, for instance, grating design, object identification, and semiconductor quality control. The proposed methods are (a) a spectrally convergent Nyström method for periodic structures in 2-D; (b) a fast Jacobian approximation method accompanying a Nyström method; (c) a fast and accurate method for evaluating the potential integrals in the 3-D mixed-potential integral operator with the Rao-Wilton-Glisson basis function; and (d) optimization with parameterized reduced-order models. The Nyström method and the method to evaluate the potential integrals accelerate scattered field evaluations by solving integral equations efficiently. The Jacobian approximation method and optimization with parameterized reduced-order models efficiently couple algorithms to evaluate scattered fields due to a guess of the scatterer and optimization methods to improve the guess. The Nyström and the Jacobian approximation methods are used to identify the parameters characterizing a periodic dielectric grating in 2-D. The method to evaluate the potential integrals and optimization with parameterized reduced-order models are applied to the problem of identifying simple discrete geometries in 3-D.en_US
dc.description.statementofresponsibilityby Jung Hoon Lee.en_US
dc.format.extent137 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleFast methods for inverse wave scattering problemsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc320081857en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record