MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel computational method for inferring dynamic genetic regulatory trajectories

Author(s)
Reeder, Christopher Campbell
Thumbnail
DownloadFull printable version (17.20Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
David K. Gifford.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We present a novel method called Time Series Affinity Propagation (TSAP) for inferring regulatory states and trajectories from time series genomic data. This method builds on the Affinity Propagation method of Frey and Dueck [10]. TSAP incorporates temporal constraints to more accurately model the dynamic nature of underlying biological mechanisms. We first apply TSAP to synthetic data and demonstrate its ability to recover underlying structure that is obscured by noise. We then apply TSAP to real data and demonstrate that it provides insight into the relationship between gene expression and histone posttranslational modifications during motor neuron development. In particular, the trajectories taken by the Hox genes through the space of regulatory states are characterized. Understanding the dynamics of Hox regulation is important because the Hox genes play a fundamental role in the establishment of motor neuron sub-type identity during development [6].
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
 
Includes bibliographical references (p. 75-77).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45869
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.