MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Techniques for high-performance digital frequency synthesis and phase control

Author(s)
Hsu, Chun-Ming, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (47.76Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Michael H. Perrott.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis presents a 3.6-GHz, 500-kHz bandwidth digital [delta][sigma] frequency synthesizer architecture that leverages a recently invented noise-shaping time-to-digital converter (TDC) and an all-digital quantization noise cancellation technique to achieve excellent in-band and out-of-band phase noise, respectively. In addition, a passive digital-to-analog converter (DAC) structure is proposed as an efficient interface between the digital loop filter and a conventional hybrid voltage-controlled oscillator (VCO) to create a digitally-controlled oscillator (DCO). An asynchronous divider structure is presented which lowers the required TDC range and avoids the divide-value-dependent delay variation. The prototype is implemented in a 0.13-am CMOS process and its active area occupies 0.95 mm². Operating under 1.5 V, the core parts, excluding the VCO output buffer, dissipate 26 mA. Measured phase noise at 3.67 GHz achieves -108 dBc/Hz and -150 dBc/Hz at 400 kHz and 20 MHz, respectively. Integrated phase noise at this carrier frequency yields 204 fs of jitter (measured from 1 kHz to 40 MHz). In addition, a 3.2-Gb/s delay-locked loop (DLL) in a 0.18-[mu]m CMOS for chip-tochip communications is presented. By leveraging the fractional-N synthesizer technique, this architecture provides a digitally-controlled delay adjustment with a fine resolution and infinite range. The provided delay resolution is less sensitive to the process, voltage, and temperature variations than conventional techniques. A new [delta][sigma] modulator enables a compact and low-power implementation of this architecture. A simple bang-bang detector is used for phase detection. The prototype operates at a 1.8-V supply voltage with a current consumption of 55 mA. The phase resolution and differential rms clock jitter are 1.4 degrees and 3.6 ps, respectively.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
 
Includes bibliographical references (p. 183-190).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45870
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.