MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Algorithmic issues in queueing systems and combinatorial counting problems

Author(s)
Katz-Rogozhnikov, Dmitriy A
Thumbnail
DownloadFull printable version (6.477Mb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
David Gamarnik and Dimitris Bertsimas.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
(cont.) However, these randomized algorithms can never provide proven upper or lower bounds on the number of objects they are counting, but can only give probabilistic estimates. We propose a set of deterministic algorithms for counting such objects for three classes of counting problems. They are interesting both because they give an alternative approach to solving these problems, and because unlike MCMC algorithms, they provide provable bounds on the number of objects. The algorithms we propose are for special cases of counting the number of matchings, colorings, or perfect matchings (permanent), of a graph.
 
Multiclass queueing networks are used to model manufacturing, computer, supply chain, and other systems. Questions of performance and stability arise in these systems. There is a body of research on determining stability of a given queueing system, which contains algorithms for determining stability of queueing networks in some special cases, such as the case where there are only two stations. Yet previous attempts to find a general characterization of stability of queueing networks have not been successful.In the first part of the thesis, we contribute to the understanding of why such a general characterization could not be found. We prove that even under a relatively simple class of static buffer priority scheduling policies, stability of deterministic multiclass queueing network is, in general, an undecidable problem. Thus, there does not exist an algorithm for determining stability of queueing networks, even under those relatively simple assumptions. This explains why such an algorithm, despite significant efforts, has not been found to date. In the second part of the thesis, we address the problem of finding algorithms for approximately solving combinatorial graph counting problems. Counting problems are a wide and well studied class of algorithmic problems, that deal with counting certain objects, such as the number of independent sets, or matchings, or colorings, in a graph. The problems we address are known to be #P-hard, which implies that, unless P = #P, they can not be solved exactly in polynomial time. It is known that randomized approximation algorithms based on Monte Carlo Markov Chains (MCMC) solve these problems approximately, in polynomial time.
 
Description
Includes bibliographical references (leaves 111-118).
 
Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2008.
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45945
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.