MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Orthopaedic applications of ferromagnetic shape memory alloys

Author(s)
Guo, Weimin, M. Eng. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (7.674Mb)
Alternative title
Orthopedic applications of ferromagnetic shape memory alloys
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Samuel M. Allen.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Ferromagnetic shape memory alloys (FSMAs) are a new class of magnetic field-actuated active materials with no current commercial applications. By applying a magnetic field of around 0.4 T, they can exert a stress of approximately 1.5 MPa, exhibiting a strain of up to 6%. This thesis evaluates their technical and commercial feasibility in orthopaedic applications. Remote actuation is a key advantage FSMAs have over current implant materials. Also, the human body temperature is constant, providing a stable environment for FSMAs to operate. A number of potential orthopaedic applications are proposed and evaluated. Out of these, the most prominent application is the spinal traction device. It is a temporary implantable device, intended to perform internal spinal traction. A design has been proposed, with suggestions of suitable materials for its various components and appropriate device dimensions. Preliminary market and cost analyses have been conducted. This orthopaedic technology is currently in its infant stage. To commercialize this device, more trials are needed.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2008.
 
Includes bibliographical references (leaves 36-40).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45957
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.