MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A commodity trusted computing module

Author(s)
Costan, Victor Marius
Thumbnail
DownloadFull printable version (17.39Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Srinivas Devadas and Luis F.G. Sarmenta.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The Trusted Execution Module (TEM) is a high-level specification for a commodity chip that can execute user-supplied procedures in a trusted environment. The TEM draws inspiration from the Trusted Platform Module (TPM), the first security-related hardware that has gained massive adoption in the PC market. However, the TEM is capable of securely executing procedures expressing arbitrary computation, originating from a potentially untrusted party, whereas the TPM is limited to a set of cryptographic functions that is fixed at design-time. Despite its greater flexibility, the TEM design was implemented on the same inexpensive off-the-shelf hardware as the TPM, and it does not require any export-restricted technology. Furthermore, the TEM removes the expensive requirement of a secure binding to it host computer. This makes TEM a great candidate for the next-generation TPM. However, the TEM's guarantees of secure execution enable exciting applications that were far beyond the reach of TPM-powered systems. The applications include but are not limited to mobile agents, peer-to-peer multiplayer online games, and anonymous offline payments.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
 
Includes bibliographical references (p. 107-110).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45988
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.