Show simple item record

dc.contributor.advisorBryan Wasileski and Jovan Popović.en_US
dc.contributor.authorColagiovanni, Lawrence W. (Lawrence William)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2009-06-30T16:56:29Z
dc.date.available2009-06-30T16:56:29Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/45990
dc.descriptionThesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.en_US
dc.descriptionIncludes bibliographical references (p. 55).en_US
dc.description.abstractThe purpose of this research is to develop the three-dimensional models of planetary surfaces which can be used in the test environments for the Vision-Based Navigation Systems' (VBNS) terrain recognition and navigation algorithms. The VBNS will fly a trajectory over the planet, taking pictures along the flight and dynamically updating the imagery passed to the VBNS. The pictures will be generated based on the current camera angle and attitude. Testing in this more realistic, arbitrary planetary environment will help ensure the most robust algorithms for the VBNS. A terrain generation tool is implemented that allows users to create synthetic planetary terrains. Users are able to arbitrarily place terrain features (e.g. craters, mountains, and boulders), textures, and lighting to create realistic planetary surfaces. Creating these complex, three dimensional models presents its own problem: a significantly larger amount of data has to be processed. To solve this problem, geomorphing is implemented and incorporated into the simulations. Geomorphing refers to the process of seamlessly switching between different levels of-detail of data, which are data sets with different resolutions; the goal is to display the appropriate level-of-detail of data based on where the VBNS is currently located. Simply switching between the different data sets causes discontinuities and visual anomalies, which affect the algorithms of the VBNS. Therefore, the switching has to be done seamlessly, so that the VBNS cannot tell there was a change in the data sets being rendered. The test results indicate that geomorphing helped to reduce the discontinuities in the simulations that occur when simply switching between the different levels-of-detail.en_US
dc.description.statementofresponsibilityby Lawrence W. Colagiovanni.en_US
dc.format.extent55 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAn implementation of terrain geomorphing in the vertex shader for synthetic planetary surfacesen_US
dc.typeThesisen_US
dc.description.degreeM.Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc351452410en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record