MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Network coding for speedup in switches

Author(s)
Kim, MinJi, M. Eng. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (593.9Kb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Muriel Médard.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Network coding, which allows mixing of data at intermediate network nodes, is known to increase the throughput of networks. In particular, it is known that linear network coding in a crossbar switch can sustain traffic patterns that cannot be served if network coding were not allowed. Thus, network coding leads to a larger rate region in a multicast crossbar switch. This thesis quantities the gain in rate region in a multicast crossbar switch in terms of speedup. We present a graph theoretic upper bound on speedup needed to achieve 100% throughput in a multicast switch using network coding. By bounding speedup, we show the equivalence between network coding and speedup in multicast switches - i.e. network coding, which is usually implemented using software, can in many cases substitute speedup, which is often achieved by adding extra switch fabrics. This bound is based on an approach to network coding problems called the "enhanced conflict graph". We show that the "imperfection ratio" of the enhanced conflict graph gives an upper bound on speedup. In particular, we apply this result to K x N switches with traffic patterns consisting of unicasts and broadcasts only to obtain an upper bound of min(2K-1/K, 2N/N+1).
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (p. 69-71).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/46325
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.