MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Signal approximation using the bilinear transform

Author(s)
Venkataraman, Archana, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (18.67Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Alan V. Oppenheim.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis explores the approximation properties of a unique basis expansion. The expansion implements a nonlinear frequency warping between a continuous-time signal and its discrete-time representation according to the bilinear transform. Since there is a one-to-one mapping between the continuous-time and discrete-time frequency axes, the bilinear representation avoids any frequency aliasing distortions. We devote the first portion of this thesis to some theoretical properties of the bilinear representation, including the analysis and synthesis networks as well as bounds on the basis functions. These properties are crucial when we further analyze the bilinear approximation performance. We also consider a modified version of the bilinear representation in which the continuous-time signal is segmented using a short-duration window. This segmentation procedure affords greater time resolution and, in certain cases, improves the overall approximation quality. In the second portion of this thesis, we evaluate the approximation performance of the bilinear representation in two different applications. The first is approximating instrumental music. We compare the bilinear representation to a discrete cosine transform based approximation technique. The second application is computing the inner product of two continuous-time signals for a binary detection problem. In this case, we compare the bilinear representation with Nyquist sampling.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.
 
Includes bibliographical references (p. 117-118).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/46466
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.