MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Miniaturizing microvias for multi-chip modules

Author(s)
Puskarich, Paul Gerard
Thumbnail
DownloadFull printable version (66.00Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
John J. Le Blanc and Thomas W. Eagar.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Electronics packaging is continually migrating toward denser packaging. This encompasses a push toward multilevel die, denser metallization, and smaller microvias. In this thesis we investigate the miniaturization of laser-drilled microvias in polyimide dielectric for chips-first multi-chip module (MCM) technology. The challenge is to produce increasingly smaller microvias and package more microvias into a given area without sacrificing electrical performance. Principally, this means a microvia must maintain certain minimum electrical resistance and mechanical adhesion to the conducting layers. The thesis encompasses the following research: 1. Investigating the state of the art in laser-drilled polyimide microvias. 2. Designing and fabricating test structures with microvias, in which the state of the art is pushed in microvia size and/or aspect ratio. 3. Measuring the contact resistances of laser-drilled microvias in a Kelvin structure configuration. 4. Developing finite element models of Kelvin structures to estimate the contact resistance of miniature microvias.The experimental results of this thesis prove that microvias with approximately 19 pm diameter and 10 mQ contact resistance can be reliably fabricated for chips-first MCM technology.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
 
Includes bibliographical references (p. 63-64).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/46516
Department
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Master's degree
  • Electrical Engineering and Computer Sciences - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.