MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A low power high power supply rejection ratio bandgap reference for portable applications

Author(s)
Sundar, Siddharth
Thumbnail
DownloadFull printable version (28.13Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Eric Kimball and Michael Perrott.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A multistage bandgap circuit with very high power supply rejection ratio was designed and simulated. The key features of this bandgap include multiple power modes, low power consumption and a novel resistor trimming strategy. This design was completed in deep submicron CMOS technology, and is especially suited for portable applications. The bandgap designed achieves over 90 dB of power supply rejection and less than 17 microvolts of noise without any external filtering. With an external filtering capacitor, this performance is significantly enhanced. In addition, the design includes an efficient voltage-to-current converter and a fast-charge circuit for charging the external capacitor.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
 
Includes bibliographical references (p. 86-87).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/46517
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.