MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multimodal speech recognition with ultrasonic sensors

Author(s)
Zhu, Bo, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (57.23Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
James R. Glass and Karen Livescu.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Ultrasonic sensing of articulator movement is an area of multimodal speech recognition that has not been researched extensively. The widely-researched audio-visual speech recognition (AVSR), which relies upon video data, is awkwardly high-maintenance in its setup and data collection process, as well as computationally expensive because of image processing. In this thesis we explore the effectiveness of ultrasound as a more lightweight secondary source of information in speech recognition. We first describe our hardware systems that made simultaneous audio and ultrasound capture possible. We then discuss the new types of features that needed to be extracted; traditional Mel-Frequency Cepstral Coefficients (MFCCs) were not effective in this narrowband domain. Spectral analysis pointed to frequency-band energy averages, energy-band frequency midpoints, and spectrogram peak location vs. acoustic event timing as convenient features. Next, we devised ultrasonic-only phonetic classification experiments to investigate the ultrasound's abilities and weaknesses in classifying phones. We found that several acoustically-similar phone pairs were distinguishable through ultrasonic classification. Additionally, several same-place consonants were also distinguishable. We also compared classification metrics across phonetic contexts and speakers. Finally, we performed multimodal continuous digit recognition in the presence of acoustic noise. We found that the addition of ultrasonic information reduced word error rates by 24-29% over a wide range of acoustic signal-to-noise ratio (SNR) (clean to OdB). This research indicates that ultrasound has the potential to be a financially and computationally cheap noise-robust modality for speech recognition systems.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
 
Includes bibliographical references (p. 95-96).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/46530
Department
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Master's degree
  • Electrical Engineering and Computer Sciences - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.