MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A wearable, wireless sensor system for sports medicine

Author(s)
Lapinski, Michael Tomasz
Thumbnail
DownloadFull printable version (64.89Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Architecture. Program in Media Arts and Sciences.
Advisor
Joseph A. Paradiso.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis describes a compact, wireless, wearable system that measures, for purposes of biomechanical analysis, signals indicative of forces, torques and other descriptive and evaluative features that the human body undergoes during bursts of extreme physical activity (such as during athletic performance). Standard approaches leverage high speed camera systems, which need significant infrastructure and provide limited update rates and dynamic accuracy, to make these measurements. This project uses 6 degree-of-freedom inertial measurement units worn on various segments of an athlete's body to directly make these dynamic measurements. A combination of low and high G sensors enables sensitivity for slow and fast motion, and the addition of a compass helps in tracking joint angles. Data from the battery-powered nodes is acquired using a custom wireless protocol over an RF link. This data, along with rigorous calibration data, is processed on a PC, with an end product being precise angular velocities and accelerations that can be employed during biomechanical analysis to gain a better understanding of what occurs during activity. The focus of experimentation was baseball pitching and batting at the professional level. Several pitchers and batters were instrumented with the system and data was gathered during several pitches or swings. The data was analyzed, and the results of this analysis are presented in this thesis. The dynamic results are more precise than from other camera based systems and also offer the measurement of metrics that are not available from any other system, providing the opportunity for furthering sports medicine research. System performance and results are evaluated, and ideas for future work and system improvements are presented.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2008.
 
Includes bibliographical references (p. 135-139).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/46581
Department
Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Publisher
Massachusetts Institute of Technology
Keywords
Architecture. Program in Media Arts and Sciences.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.