MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Physical interpretation of coarse-grained bead-spring models of complex fluids

Author(s)
Titievsky, Kirill
Thumbnail
DownloadFull printable version (28.70Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Chemical Engineering.
Advisor
Paul I. Barton.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Bulk properties and morphology of block copolymers and polymer blends are highly sensitive to processing history due to small free energy differences among various stable and metastable states. Consequently, modeling these materials requires accounting for both thermal fluctuations and non-equilibrium processes. This has proven to be challenging with traditional approaches of energy minimization and perturbation in field theories. At the same time, simulations of highly coarse-grained particle-based models, such as lattice chain Monte Carlo and bead-spring simulations, have emerged as a promising alternative. The application of these methods, however, has been hampered by a lack of clear physical interpretation of model parameters.This dissertation gives a rigorous interpretation to such coarse-grained models. First, a general thermodynamic approach to analyzing and comparing coarse-grained particle models is developed. Second, based on the analysis, a specific particle-based model is constructed so that it is unambiguously related to the standard Gaussian chain model and related field theories at realistic molecular weights. This model is complementary to field theoretic polymer simulations, which are computationally prohibitive for realistic molecular weights. Several applications of the model are demonstrated, including: fluctuation corrections to mean-field theories of block copolymers as well as a detailed investigation of the key effects governing the self-assembly of diblock copolymers confined in cylinders such as fibers or pores. The latter application introduces a novel impenetrable wall boundary model designed to attenuate effects of the walls on the total monomer density. The general approach and the specific models proposed here will find immediate application in modeling effects of flow, metastability, and thermal fluctuations on the morphology of complex fluids with molecular weights of 104 - 106 g/mol using lattice and continuous space molecular simulations.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2009.
 
Includes bibliographical references (leaves 143-148).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/46597
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Chemical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.