dc.contributor.advisor | Russ Tedrake. | en_US |
dc.contributor.author | Roberts, John W., Ph. D. Massachusetts Institute of Technology | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Mechanical Engineering. | en_US |
dc.date.accessioned | 2009-08-26T17:09:49Z | |
dc.date.available | 2009-08-26T17:09:49Z | |
dc.date.copyright | 2009 | en_US |
dc.date.issued | 2009 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/46638 | |
dc.description | Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009. | en_US |
dc.description | Includes bibliographical references (p. 71-75). | en_US |
dc.description.abstract | Creatures in nature have subtle and complicated interactions with their surrounding fluids, achieving levels of performance as yet unmatched by engineered solutions. Model-free reinforcement learning (MFRL) holds the promise of allowing man-made controllers to take advantage of the subtlety of fluid-body interactions solely using data gathered on the actual system to be controlled. In this thesis, improved MFRL algorithms, motivated by a novel Signal-to-Noise Ratio for policy gradient algorithms, are developed, and shown to provide more efficient learning in noisy environments. These algorithms are then demonstrated on a heaving foil, where it is shown to learn a flapping gait on an experimental system orders of magnitude faster than the dynamics can be simulated, suggesting broad applications both in controlling robots with complex dynamics and in the study of controlled fluid systems. | en_US |
dc.description.statementofresponsibility | by John W. Roberts. | en_US |
dc.format.extent | 75 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Mechanical Engineering. | en_US |
dc.title | Motor learning on a heaving plate via improved-SNR algorithms | en_US |
dc.title.alternative | Motor learning on a heaving plate via improved-Signal-to-Noise Ratio algorithms | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | |
dc.identifier.oclc | 426489366 | en_US |