Show simple item record

dc.contributor.advisorBarbara Imperiali.en_US
dc.contributor.authorChen, Mark Men_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemistry.en_US
dc.date.accessioned2009-08-26T17:11:28Z
dc.date.available2009-08-26T17:11:28Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/46644
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2009.en_US
dc.descriptionVita.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractN-linked glycosylation is a ubiquitous form of protein modification whereby a preassembled oligosaccharide is covalently attached the asparagine side chain of an acceptor protein. This process involves numerous enzymes, produces a diverse set of oligosaccharide structures, and results in a variety of structural and functional effects on the glycoprotein. Research discussed in this dissertation applies synthetic organic chemistry to probe this important biological system. To study the effects of N-linked glycosylation on protein folding, a semi-synthetic strategy was developed to access a set of model proteins that were homogeneously glycosylated at several sites of interest. The folding kinetics of this set of glycoproteins were then characterized using stopped-flow fluorescence spectroscopy, which revealed that the presence of the glycan show discrete effects on both the rate of protein folding and unfolding, and that the overall effect is highly specific to the local primary and secondary structure of the glycosylation site. The gram-negative bacterium Campylobacterjejuni was recently discovered to contain a general N-linked glycosylation system with a defined glycan structure and tractable enzymes for heterologous expression including a single subunit oligosaccharyltransferase. To probe the bacterial N-linked glycosylation machinery, a chemo-enzymatic synthesis for each of the glycan intermediates within this pathway was developed, which are impractical to obtain from the host organism. Importantly, chemo-enzymatic allowed for the incorporation of structural modifications for binding-specificity assays and radiolabels for accurate quantification. Access to these substrates allowed us to define the minimum glycosylation consensus sequence for the oligosaccharyltransferase as well as the polyisoprenol specificity of three representative enzymes within the pathway.en_US
dc.description.statementofresponsibilityby Mark M. Chen.en_US
dc.format.extent148 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemistry.en_US
dc.titleInvestigating asparagine-linked glycosylation substrate : specificity and effects on protein foldingen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc426526408en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record