Show simple item record

dc.contributor.advisorRobert W. Field.en_US
dc.contributor.authorBittinger, Kyle Leeen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemistry.en_US
dc.date.accessioned2009-08-26T17:11:42Z
dc.date.available2009-08-26T17:11:42Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/46646
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2009.en_US
dc.descriptionVita.en_US
dc.descriptionIncludes bibliographical references (p. 229-239).en_US
dc.description.abstractIntersystem crossing in acetylene, C₂H₂, is described by a doorway-mediated model, where singlet-triplet mixing between the first excited singlet~ state, S₁, and the manifold of low-lying T₁,₂ states is controlled by special vibrational levels of the third excited triplet state, T₃. However, the influence of T₃ doorway states on the ~A¹Au <-- ~X¹[sigma]+g spectrum of acetylene is not well characterized for most S₁ vibrational levels. The doorway model is formulated to account for the LIF/SEELEM spectra of S₁ vibrational sublevels that are weakly perturbed by T₃ doorway states. The structure and properties of a doorway-mediated effective Hamiltonian are discussed, and a method for spectral deconvolution is presented for the doorway model. The dependence of fluorescence center-of-gravity on the time delay of a gated integration region is developed as an analysis tool for LIF spectroscopy. Triplet perturbations in the spectra of four S₁ vibrational sublevels are discussed in terms of the doorway model, using this new tool. IR-UV double resonance LIF/SEELEM spectroscopy is used to investigate the role of the torsional and "cis"-bending vibrational modes of S₁ in the promotion of vibrational overlap between levels of S₁ and T₃. A collisional method for the population of metastable molecules in a pulsed supersonic expansion is presented and discussed.en_US
dc.description.statementofresponsibilityby Kyle Lee Bittinger.en_US
dc.format.extent240 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemistry.en_US
dc.titleSpectroscopic signatures of doorway-mediated intersystem crossingen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc426898604en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record