Show simple item record

dc.contributor.advisorDaniel G. Nocera.en_US
dc.contributor.authorYang, Jay Leeen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemistry.en_US
dc.date.accessioned2009-08-26T17:12:44Z
dc.date.available2009-08-26T17:12:44Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/46651
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2009.en_US
dc.descriptionVita.en_US
dc.descriptionIncludes bibliographical references (p. 44-45).en_US
dc.description.abstractTwo new model systems for the study of orthogonal proton-coupled electron transfer (PCET) have been developed. The first model system is based on Ru"(HzO)(tpy)(bpy) (tpy = 2,2';6',2"terpyridine, bpy = 2,2'-bipyridine) where methyl viologen (MV2 ) electron acceptors were appended to the ruthenium aqua complex through the bpy. Picosecond transient absorption measurements show that electron transfer from the excited state of the ruthenium complex to MV2+ occurs with [tau] -200 ps. Experiments performed in water and buffered solution at pH = 7 show no evidence of the loss of proton from the aqua ligand to the bulk solvent or to the phosphate buffer. A minor kinetic isotope effect for the rate of charge separation was found with kH/kD = 1.8 + 0.1 ps. Preliminary synthetic attempts of coupling the ET event to the PT event was accomplished by appending xanthene "Hangman" scaffolds to the 4' position of the tpy. The feasibility of modifying the xanthene scaffold to accommodate various hanging groups has been demonstrated. The second model system is based on Re'(CO)3(phen)(pyr) (phen = 1,10phenanthroline, pyr = pyridine) where tyrosine was appended to the rhenium complex through the axial pyr ligand. Unlike previous Re'(CO)3(bpy)(CN) (CN = cyanide) systems, substitution to the more rigid phen extended the lifetime of the excited state of the rhenium complex to 3.0 ls, which allowed PCET to occur from the tyrosine to the rhenium metal center and hydrogenbonded base in dichloromethane. This was inferred from substantial emission quenching of the rhenium-tyrosine complex through the titration of base (base = pyridine, imidazole, 2,4,6trimethylpyridine). Equilibrium constants measuring the extent of formation of the [rheniumtyrosine---base]+ species were found to correlate with the strength of the base based on aqueous pKa values.en_US
dc.description.statementofresponsibilityby Jay Lee Yang.en_US
dc.format.extent46 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemistry.en_US
dc.titleTowards new model systems for the study of proton-coupled electron transferen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc426941872en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record