MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synaptic plasticity in the MyosinVa mutant mouse

Author(s)
Tunca, Cansu, 1977-
Thumbnail
DownloadFull printable version (12.57Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Brain and Cognitive Sciences.
Advisor
Martha Constantine-Paton.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The trafficking of essential proteins into spines is an important aspect of synaptic plasticity. MyosinVa, an actin-based motor protein, has been implicated in the synaptic delivery of AMPARs during LTP [1]. However an earlier study showed that LTP and LTD were unaffected in the MyosinVa-null dilute-lethal mice [2]. To evaluate the role of MyosinVa in synaptic plasticity, we studied different forms of LTP and LTD in the CA1 region of the hippocanmpus from MyosinVa dominant negative mutant flailer mouse using field potential recordings. Flailer mice showed no impairment of LTP or NMDAR-dependent LTD, consistent with the findings of the study on dilute-lethal. In addition, MyosinVa has been implicated in the transport of an RNA-binding protein into the spines upon mGluR activation [3]. We explored protein synthesis and mGluR-dcpendent LTD in flailer. The preliminary data we obtained show a transient impairment in mGluR.-LTD, suggesting a role for MyosinVa in protein synthesis dependent plasticity.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2009.
 
Includes bibliographical references (leaves 32-41).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/46662
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Brain and Cognitive Sciences.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.