MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Language design for distributed stream processing

Author(s)
Newton, Ryan Rhodes, 1980-
Thumbnail
DownloadFull printable version (3.902Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Samuel Madden and Arvind.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Applications that combine live data streams with embedded, parallel, and distributed processing are becoming more commonplace. WaveScript is a domain-specific language that brings high-level, type-safe, garbage-collected programming to these domains. This is made possible by three primary implementation techniques, each of which leverages characteristics of the streaming domain. First, WaveScript employs an evaluation strategy that uses a combination of interpretation and reification to partially evaluate programs into stream dataflow graphs. Second, we use profile-driven compilation to enable many optimizations that are normally only available in the synchronous (rather than asynchronous) dataflow domain. Finally, an empirical, profile-driven approach also allows us to compute practical partitions of dataflow graphs, spreading them across embedded nodes and more powerful servers. We have used our language to build and deploy applications, including a sensor-network for the acoustic localization of wild animals such as the Yellow-Bellied marmot. We evaluate WaveScript's performance on this application, showing that it yields good performance on both embedded and desktop-class machines. Our language allowed us to implement the application rapidly, while outperforming a previous C implementation by over 35%, using fewer than half the lines of code. We evaluate the contribution of our optimizations to this success. We also evaluate WaveScript's ability to extract parallelism from this and other applications.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (p. 149-152).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/46795
Department
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.