MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterizing and recognizing spoken corrections in human-computer dialog

Author(s)
Levow, Gina-Anne
Thumbnail
DownloadFull printable version (10.31Mb)
Advisor
Robert C. Berwick.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Miscommunication in human-computer spoken language systems is unavoidable. Recognition failures on the part of the system necessitate frequent correction attempts by the user. Unfortunately and counterintuitively, users' attempts to speak more clearly in the face of recognition errors actually lead to decreased recognition accuracy. The difficulty of correcting these errors, in turn, leads to user frustration and poor assessments of system quality. Most current approaches to identifying corrections rely on detecting violations of task or belief models that are ineffective where such constraints are weak and recognition results inaccurate or unavailable. In contrast, the approach pursued in this thesis, in contrast, uses the acoustic contrasts between original inputs and repeat corrections to identify corrections in a more content- and context-independent fashion. This thesis quantifies and builds upon the observation that suprasegmental features, such as duration, pause, and pitch, play a crucial role in distinguishing corrections from other forms of input to spoken language systems. These features can also be used to identify spoken corrections and explain reductions in recognition accuracy for these utterances. By providing a detailed characterization of acoustic-prosodic changes in corrections relative to original inputs in a voice-only system, this thesis contributes to natural language processing and spoken language understanding. We present a treatment of systematic acoustic variability in speech recognizer input as a source of new information, to interpret the speaker's corrective intent, rather than simply as noise or user error. We demonstrate the application of a machine-learning technique, decision trees, for identifying spoken corrections and achieve accuracy rates close to human levels of performance for corrections of misrecognition errors, using acoustic-prosodic information. This process is simple and local and depends neither on perfect transcription of the recognition string nor complex reasoning based on the full conversation. We further extend the conventional analysis of speaking styles beyond a 'read' versus 'conversational' contrast to extreme clear speech, describing divergence from phonological and durational models for words in this style.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.
 
Includes bibliographical references (p. 103-106).
 
Date issued
1998
URI
http://hdl.handle.net/1721.1/47705
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.