MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning control of bipedal dynamic walking robots with neural networks

Author(s)
Hu, Jianjuen, 1964-
Thumbnail
DownloadFull printable version (13.11Mb)
Advisor
Gill A. Pratt.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Stability and robustness are two important performance requirements for a dynamic walking robot. Learning and adaptation can improve stability and robustness. This thesis explores such an adaptation capability through the use of neural networks. Three neural network models (BP, CMAC and RBF networks) are studied. The RBF network is chosen as best, despite its weakness at covering high dimensional input spaces. To overcome this problem, a self-organizing scheme of data clustering is explored. This system is applied successfully in a biped walking robot system with a supervised learning mode. Generalized Virtual Model Control (GVMC) is also proposed in this thesis, which is inspired by a bio-mechanical model of locomotion, and is an extension of ordinary Virtual Model Control. Instead of adding virtual impedance components to the biped skeletal system in virtual Cartesian space, GVMC uses adaptation to approximately reconstruct the dynamics of the biped. The effectiveness of these approaches is proved both theoretically and experimentally (in simulation).
Description
Thesis (Elec.E.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.
 
Includes bibliographical references (p. 90-94).
 
Date issued
1998
URI
http://hdl.handle.net/1721.1/47711
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.