Show simple item record

dc.contributor.advisorRichard W. Madison and Brent D. Appleby.en_US
dc.contributor.authorHale, Matthew J., S.M. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.en_US
dc.date.accessioned2009-10-01T15:43:02Z
dc.date.available2009-10-01T15:43:02Z
dc.date.copyright2007en_US
dc.date.issued2007en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/47788
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007.en_US
dc.descriptionIncludes bibliographical references (p. 297-298).en_US
dc.description.abstractAs exploration of the solar system continues, the need for the capability to land a spacecraft very accurately on a planetary body has become apparent. Due to limitations on the achievable accuracy of inertial navigation systems over long distances, relative navigation techniques are better suited to fill this need. Chief among these techniques is terrain relative navigation. Terrain relative navigation uses the surface features of a planetary body and an onboard map of the planetary surface to determine the spacecraft's position and update the inertial navigation system. One of the tasks of terrain relative navigation is terrain relative localization, which entails matching a sensor image of the planetary surface to the stored map of the surface. This correlation allows a position match to be determined, which is used to update the spacecraft's inertial navigation system. This thesis focuses upon two terrain relative localization techniques and their applicability to lunar entry, descent, and landing. These localization techniques are terrain contour matching (TERCOM) and a crater matching routine. Both methods are tested using simulation environments that mimic expected conditions in lunar navigation. The ability of each algorithm to generate a position match with no noise is evaluated, as well as the performance of each algorithm under various sensor noise conditions. The terrain contour matching algorithm generates a high level of error in the position match and is found to be unsuitable for lunar terrain relative navigation. The crater matching routine performs quite well, with low processing speeds, moderate memory requirements, and a high level of position match fidelity under moderate noise conditions. The crater matching routine is recommended for continued work and potential application to lunar navigation during entry, descent, and landing.en_US
dc.description.statementofresponsibilityby Matthew J. Hale.en_US
dc.format.extent298 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleTerrain relative localization for lunar entry, descent, and landingen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc428979461en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record