MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

In cylinder liquid fuel visualization during cold start

Author(s)
Dawson, Mark A. (Mark Anthony), 1975-
Thumbnail
DownloadFull printable version (28.08Mb)
Advisor
Simone Hochgreb.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In recent years carburetor injection systems in spark ignited (SI) engines have been replaced with port-fuel injection systems, and as a result there has been a significant increase in the levels of hydrocarbon (HC) emissions from SI engines during their cold start period. The presence of liquid fuel in the combustion chamber, during a cold start, is believed to contribute significantly to the increased levels. This work uses planar laser induced fluorescence to visualize the development of liquid fuel in the cylinder of a firing SI engine. A closed valve injection strategy was used, as this is the strategy most commonly found in practice. Fluorescence from indolene and iso-octane doped with acetone and 3-pentanone was used to examine volatility effects. Images were taken on three planes through the cylinder and a number of post-processing techniques were used to analyze the results. The results were analyzed on both a time and crank-angle (CA) basis. Analysis on a crank-angle basis relates the location of liquid fuel entering the cylinder to engine events, and shows a maximum in the quantity of liquid fuel coming from the back of the intake valve at the crank angle position closest to the position of maximum valve lift. A semi-quantitative analysis based on the integration of the image intensities shows the time development of liquid fuel in the cylinder, and highlights the volatility effects.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1998.
 
Includes bibliographical references (leaves 77-78).
 
Date issued
1998
URI
http://hdl.handle.net/1721.1/47797
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering

Collections
  • Mechanical Engineering - Master's degree
  • Mechanical Engineering - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.