Show simple item record

dc.contributor.advisorChoon Sooi Tan and Edward M. Greitzer.en_US
dc.contributor.authorReichstein, Georg Aen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.en_US
dc.date.accessioned2009-10-01T15:45:24Z
dc.date.available2009-10-01T15:45:24Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/47806
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2009.en_US
dc.descriptionIncludes bibliographical references (p. 77-78).en_US
dc.description.abstractThis thesis presents an examination of body force distributions in a single stage low speed compressor. The body force distributions are developed using two different computational procedures, an axisymmetric streamline curvature calculation and an unsteady, three-dimensional flow simulation. A two-dimensional body force representation is defined as a benchmark to evaluate the departures of the computed forces from two-dimensional behavior. The most important contribution to this departure (for both the streamline curvature calculation and the three-dimensional simulation) is identified as the change in streamtube height across the blade rows. The magnitude of the departures increase with blade loading and, for the compressor examined, are smaller than five per cent of the two-dimensional estimate at design but show values up to 50 per cent near stall.en_US
dc.description.statementofresponsibilityby Georg A. Reichstein.en_US
dc.format.extent78 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleEstimation of axial compressor body forces using three-dimensional flow computationsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc429047712en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record