Show simple item record

dc.contributor.advisorThomas F. Quatieri.en_US
dc.contributor.authorMehta, Daryush (Daryush Dinyar)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2009-10-01T15:46:52Z
dc.date.available2009-10-01T15:46:52Z
dc.date.copyright2006en_US
dc.date.issued2006en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/47819
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.en_US
dc.descriptionIncludes bibliographical references (p. 139-145).en_US
dc.description.abstractThe current study investigates the synthesis and analysis of aspiration noise in synthesized and spoken vowels. Based on the linear source-filter model of speech production, we implement a vowel synthesizer in which the aspiration noise source is temporally modulated by the periodic source waveform. Modulations in the noise source waveform and their synchrony with the periodic source are shown to be salient for natural-sounding vowel synthesis. After developing the synthesis framework, we research past approaches to separate the two additive components of the model. A challenge for analysis based on this model is the accurate estimation of the aspiration noise component that contains energy across the frequency spectrum and temporal characteristics due to modulations in the noise source. Spectral harmonic/noise component analysis of spoken vowels shows evidence of noise modulations with peaks in the estimated noise source component synchronous with both the open phase of the periodic source and with time instants of glottal closure. Inspired by this observation of natural modulations in the aspiration noise source, we develop an alternate approach to the speech signal processing aim of accurate pitch-scale modification. The proposed strategy takes a dual processing approach, in which the periodic and noise components of the speech signal are separately analyzed, modified, and re-synthesized. The periodic component is modified using our implementation of time-domain pitch-synchronous overlap-add, and the noise component is handled by modifying characteristics of its source waveform.en_US
dc.description.abstract(cont.) Since we have modeled an inherent coupling between the original periodic and aspiration noise sources, the modification algorithm is designed to preserve the synchrony between temporal modulations of the two sources. The reconstructed modified signal is perceived to be natural-sounding and generally reduces artifacts that are typically heard in current modification techniques.en_US
dc.description.statementofresponsibilityby Daryush Mehta.en_US
dc.format.extent145 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAspiration noise during phonation : synthesis, analysis, and pitch-scale modificationen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc429466806en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record