MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal self assembly of modular manipulators with active and passive modules

Author(s)
Yun, Seung-kook
Thumbnail
DownloadFull printable version (32.21Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Daniela Rus.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we describe algorithms to build self-assembling robot systems composed of active modular robots and passive bars. The robotic module is the Shady3D robot and the passive component is a rigid bar with embedded IR LEDs. We propose algorithms that demonstrate the cooperative aggregation of modular robotic manipulators with greater capability and workspace out of these two types of elements. The distributed algorithms are based on locally optimal matching. We demonstrate how to build an active structure by the cooperative aggregation and disassembly of modular robotic manipulators. A target structure is modeled as a dynamic graph. We prove that the same optimality - quadratic competitive ratio - as for the static graph can be achieved for the algorithms. We demonstrate how this algorithm can be used to build truss-like structures. We present results from physical experiments in which two 3DOF Shady3D robots and one rigid bar coordinate to self-assemble into a 6DOF manipulator. We then demonstrate cooperative algorithms for forward and inverse kinematics, grasping, and mobility with this arm.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.
 
Includes bibliographical references (p. 89-92).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/47822
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.