MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Coherent multi-exciton dynamics in semiconductor nanostructures via two-dimensional Fourier transform optical spectroscopy

Author(s)
Stone, Katherine Walowicz
Thumbnail
DownloadFull printable version (7.633Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Chemistry.
Advisor
Keith A. Nelson.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The Coulomb correlations between photoexcited charged particles in materials such as photosynthetic complexes, conjugated polymer systems, J-aggregates, and bulk or nanostructured semiconductors produce a hierarchy of collective electronic excitations (i.e. excitons, biexcitons, etc.) which may be harnessed for applications in quantum optics, light-harvesting, or quantum information technologies. These excitations represent correlations among successively greater numbers of electrons and holes, and their associated multiple-quantum coherences could reveal detailed information about complex many-body interactions and dynamics. However, unlike single-quantum coherences involving excitons, multiple-quantum coherences do not radiate and they have largely eluded direct observation and characterization. In this work, I present a novel optical technique, two-quantum two-dimensional Fourier transform optical spectroscopy, which allows direct observation of the dynamics of multiple-exciton states that reflect the correlations of their constituent electrons and holes. The approach is based on closely analogous methods in nuclear magnetic resonance, in which multiple phase-coherent fields are used to drive successive transitions such that multiple-quantum coherences can be accessed and probed. A spatiotemporal femtosecond pulse shaping technique has been used to overcome the challenge of control over multiple, noncollinear phase-coherent optical Fields in the experimental geometries that are used to isolate selected signal contributions through wavevector matching.
 
(cont.) Results from a GaAs quantum well system reveal distinct coherences of biexcitons that are formed from two identical excitons or from two excitons whose holes are in di®erent spin sublevels ("heavy-hole" and "light-hole" excitons). The biexciton binding energies and dephasing dynamics are determined, and changes in the dephasing rates as a function of the excitation density are observed, revealing still higher-order correlations due to exciton-biexciton interactions. Two-quantum coherences due to four-particle correlations that do not involve bound biexciton states but that in°uence the exciton properties are also observed and characterized. I also present one-quantum two-dimensional Fourier transform optical spectroscopy measurements which show that the higher-order correlations isolated by two-quantum techniques are highly convolved with two-particle correlations in the conventional one-quantum measurements.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2009.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (p. 139-149).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/49554
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.